COURSE STRUCTURE AND DETAILED SYLLABUS R18 PG

DEPARTMENT OF

ELECTRONICS AND COMMUNICATION ENGINEERING

DEPARTMENT OF ECE

I Semester

C.N.	Core or	Course		T	T	D	IN /	EM	CD
S. No.	Elective	Code	Course Name	L	T	P	11/1	EM	СК
1	Core 1	1854101	Digital System Design	3	0	0	40	60	3
2	Core 2	1854102	Digital Communication Techniques	3	0	0	40	60	3
3	PE I	1854103 1854104 1854105	1.Analog & Digital CMOS VLSI Design 2.Low power VLSI 3.SoC Design	3	0	0	40	60	3
4	PE II	1854106 1854107 1854108	 Digital Image & Video Processing Wireless & Mobile Communications Advanced Communication Networks 	3	0	0	40	60	3
5		1800109	Research Methodology & IPR	2	0	0	40	60	2
6	Core	1854110	DSD Lab	0	0	4	50	50	2
7	Core	1854111	DCT Lab	0	0	4	50	50	2
8	Audit Course	1870A02	Disaster Management	2	0	0	40	0	0
Total:				16	0	8	300	400	18

R 18-PG SYLLABUS

II Semester

S. No.	Core or	Course	Course Name	L	Т	Р	IM	EM	CR
	Elective	Code							
1	Core 3	1854201	Microcontrollers	3	0	0	40	60	3
			&						
			Programmable						
-	~ /		DSP Processors		-	-			-
2	Core 4	1854202	Advanced DSP	3	0	0	40	60	3
3	PE III	1854203	1.Advanced	3	0	0	40	60	3
			Computer						
			Architecture						
		1854204	2.IOT &						
			Applications						
		1854205	3.VLSI Signal						
			Processing						
4	PE IV	1854206	1.Detection &	3	0	0	40	60	3
			Estimation						
			Theory						
		1854207	2.Optical						
			Networks						
		1854208	3.Biomedical						
			Signal						
			Processing						
5	Core	1854209	Mini Project	0	0	4	100	0	2
			with Seminar						
6	Core	1854210	Microcontrollers	0	0	4	50	50	2
			and						
			Programmable						
			DSP Processors						
			Lab						
7	Core	1854211	Advanced DSP	0	0	4	50	50	2
			Lab						
8	Audit	1870A01	English for	2	0	0	40	0	0
	Course		Research paper						
			writing						
Total:				14	0	12	360	340	18

III Semester

S. No.	Core or	Course	Course Name	L	Т	Р	IM	EM	CR
	Elective	Code							
1	PE V	1854301	1.Microcomputer	3	0	0	40	60	3
			System Design						
		1854302	2. Joint Time						
			Frequency						
			Analysis &						
		1854303	MRA						
			3. Pattern						
			recognition &						
			Machine						
			learning						
2	OE	1871304	1.Business	3	0	0	40	60	3
			Analytics						
		1871305	2.Industrial						
		1871306	Safety						
			3.Operations						
		1871307	Research						
			4.Cost						
			Management of						
			Engineering						
		1871308	Projects						
			5.Composite						
		1871309	Materials						
			6.Waste to						
			Energy						
3	Major	1854310	Dissertation	0	0	20	100	-	10
	Project		Phase I						
Total:				6	0	20	180	120	16

IV Semester

S. No.	Core or	Course	Course	L	Т	Р	IM	EM	CR
	Elective	Code	Name						
1	Major	1854401	Dissertation	0	0	32	50	50	16
	Project		Phase II						
Total:				0	0	32	50	50	16

Course 7	litle	Dig	ital Sy	stem]	Desig	gn	M.Te	ch. I Sem		
Course C	Code	Category	Hours/Week C			Credits	Maximum Marks			
185410)1	Core 1	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
			3	0	0	3	40	60	100	
Mid Exa	m Du	ration: 2Hrs					End Exam Dura	ation: 3Hrs	5	
Course C	ourse Objectives:									
	 To analyze and design combinational and sequential logic circuits. Troubleshooting faults regarding Digital Systems. 									
Course C	Jutcor	mes: On succe	essful co	mpleti	on of	this course,	the students will	be able to		
CO 1	Desig	n sequential c	ircuits u	sing R	OMs a	and PLAs.				
CO 2	Diagnosis of faults in Combinational circuits.									
CO 3	Generate patterns for testing faults.									
CO 4	Design Testable PLA.									
CO 5	Desig	n Asynchrono	us Sequ	ential 1	Machi	ine.				

Design of Digital Systems: ASM charts, Hardware description language and control sequence method, design of sequential circuits using ROMs and PLAs, sequential circuit design using CPLD, FPGAs.

UNIT II

Fault Modeling & Test Generation :Fault classes and models – Stuck at faults, bridging faults, transition and intermittent faults, Fault diagnosis of Combinational circuits by conventional methods- Path Sensitization technique, Boolean difference method, Kohavi algorithm.

UNIT III

Test Pattern Generation & Fault Diagnosis: D – algorithm, PODEM, Random testing, Signature Analysis and testing for bridging faults, Design of fault detection.

UNIT IV

Programmable Logic Arrays: Design using PLAs, PLA minimization and PLA folding

Fault models, Test generation and Testable PLA design.

UNIT V

Asynchronous Sequential Machine: Fundamental mode model, flow table, state reduction, minimal closed covers, races, cycles and hazards.

Text Books:

- 1. Z. Kohavi "Switching & finite Automata Theory" (TMH)
- 2. N. N. Biswas "Logic Design Theory" (PHI)
- 3. Nolman Balabanian, Bradley Calson "Digital Logic Design Principles" Wily Student Edition 2004.
- 4. Stephan Eggersglüß and Rolf Drechsler, "High Quality Test Pattern Generation and Boolean Satisfiability", Springer; 2012th edition.

Reference Books:

- 1. Charles H. Roth Jr. "Fundamentals of Logic Design".
- 2. Frederick. J. Hill & Peterson "Computer Aided Logic Design" Wiley 4th Edition.
- 3. Barry Wilkinson, "Digital System Design", Prentice Hall; 2nd edition.
- 4. Zainalabedin Navabi, "Digital System Test and Testable Design", Springer US.

Course Title	Digital Co	Digital Communication T				M.Te	ch. I Sem	
Course Code	Category	Hou	rs/We	ek	Credits	Maximum Marks		
1854102	Core 2	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
		3	0	0	3	30	70	100
Mid Exam Du	ration: 2Hrs					End Exam Dura	ation: 3Hrs	
Course Object	tives:							
• To Und	erstand basic of	compone	ents of	digita	l communic	ation systems.		
• To Dest	ign optimum r	eceivers	for dig	gital n	nodulation to	echniques.		
• To Ana	lyze the error	performa	ance of	f digit	al modulatio	on techniques.		
• To Design digital communication systems under given power, spectral and error performance constrains.								
Course Outco	Course Outcomes: After completion of the course the students are able to							

CO 1	Understand the orthogonalization and characteristics of random processes
CO 2	Analyze the receivers and equalizers.
CO 3	Analyze various Digital Modulation Schemes.
CO 4	Analyze various synchronization methods
CO 5	Describe Multicarrier Systems

Deterministic and Random Signal Analysis

Bandpass and Lowpass Signal Representation, Signal Space Representation of Waveforms-Vector Space Concepts, Signal Space Concepts, Orthogonal Expansions of Signals- Gram-Schmidt Procedure, Some Useful Random Variables, Bounds on Tail Probabilities, Limit Theorems for Sums of Random Variables, Random Processes -Wide-Sense Stationary Random Processes, Cyclostationary Random Processes, Bandpass and Lowpass Random Processes

UNIT II

Digital Communication Through Band-Limited Channels

Design of Band-Limited Signals for No Intersymbol Interference—The Nyquist Criterion, Design of Band-Limited Signals with Controlled ISI—Partial-Response Signals, Data Detection for Controlled ISI, Signal Design for Channels with Distortion, Optimum Receiver for Channels with ISI and AWGN - Optimum Maximum-Likelihood Receiver, Linear Equalization - Peak Distortion Criterion, Mean-Square-Error(MSE) Criterion, Performance Characteristics of the MSE Equalizer, Fractionally Spaced Equalizers, Baseband and Pass band Linear Equalizers, Decision-Feedback Equalization -Coefficient Optimization, Performance Characteristics of DFE, Predictive Decision-Feedback Equalizer.

UNIT III

Digital Modulation Schemes:

Introduction, Geometric Representation of Signals, Conversion of the Continuous AWGN Channel into a Vector Channel, Optimum Receivers Using Coherent Detection, Probability of Error, Phase-Shift Keying Techniques Using Coherent Detection, *M*-ary Quadrature Amplitude Modulation, Frequency-Shift Keying Techniques Using Coherent Detection, Comparison of *M*-ary PSK and *M*-ary FSK from an Information-Theoretic Viewpoint, Detection of Signals with Unknown Phase, Noncoherent Orthogonal Modulation Techniques, Binary Frequency-Shift Keying Using Noncoherent Detection, Differential Phase-Shift Keying, BER Comparison of Signaling Schemes over AWGN Channels.

UNIT IV

Synchronization:

Synchronization Defined, Costs versus Benefits, Receiver Synchronization- Frequency and Phase Synchronization, Symbol Synchronization, Discrete Symbol Modulations, Synchronization with Continuous-Phase Modulations (CPM), Frame Synchronization

UNIT V

Multichannel and Multicarrier Systems

Multichannel Digital Communications in AWGN Channels- Binary Signals, M-ary Orthogonal Signals Multicarrier Communications - Single-Carrier Versus Multicarrier Modulation, Capacity of a Nonideal Linear Filter Channel, Orthogonal Frequency Division Multiplexing (OFDM), Modulation and Demodulation in an OFDM System, An FFT Algorithm Implementation of an OFDM System, Spectral Characteristics of Multicarrier Signals, Bit and Power Allocation in Multicarrier Modulation, Peak-to-Average Ratio in Multicarrier Modulation, Channel Coding Considerations in Multicarrier Modulation

Text Books:

- 1. J.G. Proakis and Masoud Salehi, Digital Communications, McGraw Hill, 2000.
- 2. Bernerd Sklar, "Digital Communications- Fundamentals & Applications, "Prentice Hall, 2001.
- 3. Simon S Haykin, "Digital Communications Systems", Wiley, 2013.
- 4. Ahmad R S Bahai ,Burton R Saltzberg ,Mustafa Ergen, "Multi-carrier Digital Communications: Theory and Applications of OFDM." Springer Publications.

Reference Books:

- 1. J.S.Chitode, "Digital Communication", Technical Publications.
- 2. Edward. A. Lee and David. G. Messerschmitt, "Digital Communication", Allied Publishers (second edition).
- 3. J Marvin.K.Simon, Sami. M. Hinedi and William. C. Lindsey, "Digital Communication Techniques", PHI.
- 4. William Feller, "An introduction to Probability Theory and its applications", Vol 11, Wiley 2000.

Course	Title	Analog a	nd Dig De	gital C sign	CMOS	S VLSI	M.Te					
Course	Code	Category	Hou	rs/We	ek	Credits	Maximum Marks					
1854103		PE I	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total			
			3	0	0	3	40	60	100			
Mid Exam Duration: 2Hrs							End Exam Duration: 3Hrs					
Course Objectives:												
•]	To unde	erstand Optim	ization a	nd sim	ulatio	n of analog	and digital circui	ts using CM	IOS.			
• 7	To unde	erstand the con	ncepts of	f Analo	og MC	S devices a	nd current mirror	circuits.				
Course	Outco	mes: At the er	d of this	s cours	e, stud	dents will be	able to					
CO 1	Analy	ze, design, op	timize a	nd sim	ulate	analog and o	digital circuits usi	ing CMOS				
CO 2	constrained by the design metrics											
CO 3	Connect the individual gates to form the building blocks of a system.											
CO 4	Use E	Use EDA tools like Cadence, Mentor Graphics and other open source software tools										
	like N	Igspice					-					

Digital CMOS Design:

Unit I

Review: Basic MOS structure and its static behaviour, Dynamic Behavior, Stick diagram and Layout, Wire delay models. Inverter: Static CMOS inverter, Switching threshold and noise margin concepts and their evaluation, Power consumption.

Unit II

Physical design flow: Floor planning, Placement, Routing, CTS, Power analysis. Combinational logic: Static CMOS design, Complementary CMOS, Ratioed logic, Pass transistor logic, Dynamic logic, Speed and power dissipation in dynamic logic, Cascading dynamic gates.

Unit III

Sequential logic: Static latches and registers, Bi-stability principle, MUX based latches, Static SR flip-flops, Master-slave edge-triggered register, Dynamic latches and registers, Concept of pipelining, Pulse registers, Non-bistable sequential circuit.

Analog CMOS Design:

Unit IV

Single Stage Amplifier: CS stage with resistance load, Diode connected load, Current source load, CS stage with source degeneration, Common gate stage, CG Stage With Biasing Source follower, Source Follower With Biasing.

Unit V

Passive and active current mirrors: Basic current mirrors, Cascode Stage, Cascode as a Current Source, Cascode as an Amplifier, Active current mirrors, Bipolar Current Mirror, MOS Current Mirror.

Text Books:

- 1. J P Rabaey, A P Chandrakasan, B Nikolic, "Digital Integrated circuits: A design perspective", Prentice Hall electronics and VLSI series, 2nd Edition.
- 2. Baker, Li, Boyce, "CMOS Circuit Design, Layout, and Simulation", Wiley, 2nd Edition.
- 3. BehzadRazavi, "Design of Analog CMOS Integrated Circuits", TMH, 2007.
- Phillip E. Allen and Douglas R. Holberg, "CMOS Analog Circuit Design", Oxford, 3rd Edition.

- 1. R J Baker, "CMOS circuit Design, Layout and Simulation", IEEE Inc., 2008.
- 2. Kang, S. and Leblebici, Y., "CMOS Digital Integrated Circuits, Analysis and Design" TMH, 3rdEdition.
- 3. Pucknell, D.A. and Eshraghian, K., "Basic VLSI Design", PHI, 3rd Edition.
- 4. Kenneth Martin Chan Carusone and David Johns, "Analog Integrated Circuit Design", Wiley; Second edition.

Course Title	Low	Power	VLSI	Des	M.Tech. I Sem				
Course Code	Category	Hours/Week			Credits	Maximum Marks			
1854104	PE I	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
		3	0	0	3	40	60	100	
Mid Exam Duration: 2Hrs					End Exam Duration: 3Hrs				

Mid Exam Duration: 2Hrs

Course Objectives:

- To identify the sources of power dissipation in digital IC systems & understand the impact • of power on system performance and reliability.
- To understand leakage sources and reduction techniques

Course Outcomes: At the end of this course, students will be able to							
CO 1	Understand leakage sources and reduction techniques.						
CO 2	Characterize and model power consumption & understand the basic analysis methods.						
CO 3	Identify the sources of power dissipation in digital IC systems & understand the impact						
	of power on system performance and reliability.						

UNIT-I

Technology & Circuit Design Levels: Sources of power dissipation in digital ICs, degree of freedom, recurring themes in low-power, emerging low power approaches, dynamic dissipation in CMOS, effects of Vdd & Vt on speed, constraints on Vt reduction, transistor sizing & optimal gate oxide thickness, impact of technology scaling, technology innovations.

UNIT-II

Low Power Circuit Techniques: Power consumption in circuits, flip-flops & latches, high capacitance nodes, energy recovery, reversible pipelines, high performance approaches.

UNIT -III

Low Power Clock Distribution: Power dissipation in clock distribution, single driver Versus distributed buffers, buffers & device sizing under process variations, zero skew Vs. Tolerable skew, chip & package co-design of clock network.

UNIT-IV

Logic Synthesis for Low Power estimation techniques: Power minimization techniques, low power arithmetic components- circuit design styles, adders, multipliers.

UNIT-V

Low Power Memory Design: Sources & reduction of power dissipation in memory subsystem, sources of power dissipation in DRAM & SRAM, low power DRAM circuits, low power SRAM circuits.

Text Books:

- 1. P. Rashinkar, Paterson and L. Singh, "Low Power Design Methodologies", KluwerAcademic, 2002
- 2. Kaushik Roy, Sharat Prasad, "Low power CMOS VLSI circuit design", John WileysonsInc.,2000.
- 3. J.B.Kulo and J.H Lou, "Low voltage CMOS VLSI Circuits", Wiley, 1999.
- 4. Sung-Mo Kang, Yusuf Leblebici, "CMOS Digital Integrated Circuits Analysis and Design, TMH,2011.

- 1. A. P. Chandrasekaran and R. W. Broadersen, "Low power digital CMOS design", Kluwer, 1995
- 2. Gary Yeap, "Practical low power digital VLSI design", Kluwer, 1998.
- 3. Kiat-Seng Yeo, Kaushik Roy, "Low-Voltage, Low-Power VLSI Subsystems", TMH Professional Engineering.
- 4. Ming-BO Lin, "Introduction to VLSI Systems: A Logic, Circuit and System Perspective" CRC Press, 2011

Course Title		SOC	Desig	n		M.Tech. I Sem				
Course Code	Category	Hours/Week			Credits	Maximum Marks				
1854105	PE I	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
		3	0	0	3	40	60	100		
Mid Exam Duration: 2Hrs						End Exam Dura	ation: 3Hrs	5		

Mid Exam Duration: 2Hrs

Course Objectives:

- To Design SoC based system for engineering applications.
- To Realize impact of SoC on electronic design philosophy and Macro-electronics therebyincline towards entrepreneurship & skill development.
- To Simulate Low power FPGA, configurable systems.

Course	Course Outcomes: At the end of this course, students will be able to							
CO 1	Identify a given problem in the framework of SoC based design approaches.							
CO 2	Design SoC based system for engineering applications.							
CO 3	Realize impact of SoC on electronic design philosophy and Macro-electronics thereby							
	incline towards entrepreneurship & skill development.							
CO 4	Simulate Low power FPGA, configurable systems.							
CO 5	Synthesize Technology independent and technology dependent approaches.							

UNIT- I

ASIC : Overview of ASIC types, design strategies, CISC, RISC and NISC approaches for SOC architectural issues and its impact on SoC design methodologies, Application Specific Instruction Processor (ASIP) concepts.

UNIT-II

NISC Control Words methodology, NISC Applications and Advantages, Architecture Description Languages (ADL) for design and verification of Application Specific Instructionset Processors (ASIP), No-Instruction-Set-computer (NISC)- design flow, modeling NISC architectures and systems.

UNIT-III

Simulation: Different simulation modes, behavioural, functional, static timing, gate level, switch level, transistor/circuit simulation, design of verification vectors, Low power FPGA, configurable systems, SoC related modeling of data path design and control logic, Minimization of interconnects impact, clock tree design issues.

UNIT-IV

Low power SoC design / Digital system, Design synergy, Low power system perspectivepower gating, clock gating, adaptive voltage scaling (AVS), Static voltage scaling, Dynamic clock frequency and voltage scaling (DCFS), building block optimization, building block memory, power down techniques, power consumption verification.

UNIT-V

Synthesis: Role and Concept of graph theory and its relevance to synthesizable constructs, Walks, trails paths, connectivity, components, mapping/visualization, nodal and admittance graph. Technology independent and technology dependent approaches for synthesis, optimization constraints, Synthesis report analysis.

Text Books:

- 1. Hubert Kaeslin, "Digital Integrated Circuit Design: From VLSI Architectures to CMOS Fabrication", Cambridge University Press, 2008.
- 2. B. Al Hashimi, "System on chip-Next generation electronics", The IET, 2006
- 3. Rochit Rajsuman, "System-on- a-chip: Design and test", Advantest America R & D Center, 2000
- 4. P Mishra and N Dutt, "Processor Description Languages", Morgan Kaufmann, 2008

- 1. Michael J. Flynn and Wayne Luk, "Computer System Design: System-on-Chip". Wiley,2011
- 2. Richard S. Sandige, "Modern Digital Design", MGH, International Editions, 1990
- 3. Charles H. Roth, "Fundamentals of Logic Design", 5th Edition. Cengage Learning, 2010.
- 4. B. Al Hashimi, "System on chip-Next generation electronics", The IET, 2006

Course	Title	Digital Im	age and	l Vid	eo Pr	ocessing	M.Te	ch. I Sem		
Course	Code	Category	Hou	rs/We	ek	Credits	Maxim	um Marks		
18541	06	PE II	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
			3	0	0	3	40	60	100	
Mid Exa	am Du	ration: 2Hrs					End Exam Dura	ation: 3Hrs	5	
Course	Object	tives:	ves:							
• 7 • 7 • 7 • 7 • 7 • 7 Course • CO 1	o prov and vid o give o stud o Und o Stud Outco Defin	vide an introdu leo processing an understand y Edge detecti erstand techni ly techniques f mes: At the er e various imag	ction to ling of th on and I ques for <u>for image</u> d of this ge and v	the bas ne two mage l video e and v cours deo pr	sic con -dime Enhan samp video e, stud rocess	ncepts and to nsional sample cement Algoling and mo compression dents will be ing paramet	echniques used in pling and quantiz orithms tion estimation and object recog able to ers	digital ima ation gnition	ıge	
CO 2	Expla	in image filter	ring, seg	mentat	ion, r	estoration ar	nd compression			
CO 3	Comp restor	oare different (ation techniqu	Color mo es	odels, e	enhano	cement tech	niques, motion es	timation an	id image	
CO 4	Apply	the concepts	of image	e and v	video j	processing to	echniques in varie	ous applicat	tions.	
CO 5	Analy	ze mathemati	cal oper	ations,	, codi	ng, filtering	and motion esti	mation me	thods in	
	image	e and video pro	ocessing	•						

Fundamentals of Image Processing: Digital image fundamentals, Applications of image processing, Image Sampling and Quantization, relationship between pixels.

Image Transforms: General approach for operating in the linear transform domain, 2-D DFT and Properties, Walsh transform, Hadamard Transform, Discrete cosine Transform, Haar transform, KL Transform or Hotelling transform.

UNIT II

Image Enhancement: Spatial domain methods: Spatial domain methods: Point processing, Histogram processing, Fundamentals of spatial filtering, smoothing spatial filters, sharpening spatial filters.

Frequency domain methods: Basics of filtering in frequency domain, image smoothing, image sharpening, Homomorphic filtering, LOG filters.

Colour image processing: Colour fundamentals, colour models, Pseudo color image processing.

UNIT III

Image Segmentation: Point, Line and Edge detection, Edge linking and boundary detection, Thresholding, Region based segmentation – Region growing, Region splitting and merging. Region Based segmentation.

Image Restoration: Degradation model, Noise models, Restoration in the presence of noise only – spatial filtering, Periodic noise reduction by frequency domain filtering, linear position-Invariant degradation, restoration using inverse filtering, Wiener filtering, Constrained Least Squares filtering.

UNIT IV

Image Compression: Redundancies in images, Fidelity criteria, Image compression models, Error free compression – Variable length coding, Huffman coding, Arithmetic coding, LZW coding, Bit-plane coding, loss less and lossy predictive coding, Transform coding, Image Compression standards- JPEG, JPEG 2000.

UNIT V

Video Processing: Definition of video signal, Analog and digital video, digital video applications, 3-D sampling and filtering, motion estimation and compensation signals, Transform coding, Predictive coding, Motion estimation algorithms, Search algorithms for Block Matching in motion estimation, video compression standards- MPEG-2/4, H.264, SVC.

Text Books:

- 1. R.C. Gonzalez & R.E. Woods, "Digital Image processing" Addison Wesley/ Pearson Ed., 2nd Edition, 2002.
- 2. S.Jayaraman, S.Esakkirajan, T.Veera Kumar, "Digital Image Processing"TMH, 2009.
- 3. J. W. Woods, "Multidimensional Signal, Image and Video Processing and Coding", 2nd Edition, Academic Press, 2011.

4. Somka, Hlavac, Boyle , Digital Image Processing and Computer Vision -- Cengage Learning (Indian edition) 2008.

Reference Books:

- 1. Ed. Al Bovik ,"Handbook of Image and Video Processing", 2nd Edition, Academic Press, 2000.
- 2. Rafael C. Gonzalez, Richard E Woods and Steven L., "Digital Image processing using MAT LAB", 2nd Edition, PEA, 2004.
- 3. Vipula Singh, "Digital Image Processing with MATLAB and LabView", Elsevier.
- 4. M. Tekalp, "Digital Video Processing", Prentice Hall International

Course	Title	Wi	ireless : Commu	and M inicat	Iobil ion	e	M.Te	ch. I Sem			
Course	Code	Category	Hou	rs/We	ek	Credits	Maxim	um Marks			
18541	07	PE II	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
			3	0	0	3	40	60	100		
Mid Exa	am Du	ration: 2Hrs End Exam Duration: 3Hrs							5		
Course	Object	ectives:									
• 1 v • 7 • 7 • 7 • 7	To prov video p To give To stud To Und To Stuc	rocessing. an understand y Edge detecti lerstand techni ly techniques f mes: At the er	ling of the formation for the formation and I ques for for imaged of this provide the formation of the forma	the bas he two- mage l video e and v	-dime Enhar samp video	ncepts and to nsional samp cement Algo bling and mo compression dents will be	echniques used in pling and quantiz orithms tion estimation and object recog	a digital ima	ige and		
CO 1	Desig	n appropriate	mobile of	commu	unicati	ion systems					
CO 2 CO 3	Distin TDM Analy	nguish various A, CDMA, an yze path loss a	multiple d their a nd interf	e-acces dvanta erence	s tech ges an for w	niques for n nd disadvant vireless telep	nobile communic ages. hony and their in	ations e.g.	FDMA, 1 a		
CO 4	Analy	ze and design el details, adv	CDMA antages	systen and dis	n func	tioning with ntages of usi	h knowledge of fo ing the technolog	orward and	reverse		

Introduction to Wireless Communications Systems: Evolution, Examples of Wireless Communication systems, Comparison, Second Generation Cellular Networks, WLL, Bluetooth and Personal Area Networks.

GSM Fundamentals: GSM architecture and interfaces, GSM architecture details, GSM subsystems, GSM Logical Channels, Data Encryption in GSM, Mobility Management, Call Flows in GSM.2.5 G Standards: High speed Circuit Switched Data (HSCSD), General Packet Radio Service (GPRS), 2.75 G Standards: EDGE

UNIT II

Mobile Radio Propagation: Large Scale Path Loss, Free Space Propagation Model, Reflection, Ground Reflection (Two-Ray) Model, Diffraction, Scattering, Practical Link Budget Design using Path Loss Models, Outdoor Propagation Models, Indoor Propagation Models, Signal Penetration into Buildings. Small Scale Fading and Multipath Propagation, Impulse Response Model, Multipath Measurements, Parameters of Multipath channels, Types of Small Scale Fading: Time Delay Spread; Flat, Frequency selective, Doppler Spread; Fast and Slow fading.

UNIT III

Multiple access technologies: TDMA, FDMA and CDMA, Comparison of these technologies based on their signal separation techniques, advantages, disadvantages and application areas.

Code Division Multiple Access: Introduction to CDMA technology, IS 95 system Architecture, Air Interface, Physical and logical channels of IS 95, Forward Link and Reverse link operation, Physical and Logical channels of IS 95 CDMA, IS 95 CDMA Call Processing, soft Handoff, Evolution of IS 95 (CDMA One) to CDMA 2000, CDMA 2000 layering structure and channels.

UNIT IV

Equalization and Diversity: Equalizers in a communications receiver, Algorithms for adaptive equalization, diversity techniques, space, polarization, frequency diversity, Interleaving.

UNIT V

Higher Generation Cellular Standards: 3G Standards: evolved EDGE, enhancements in 4G standard, Architecture and representative protocols, call flow for LTE, VoLTE, UMTS, introduction to 5G.

Text Books

- 1. V.K.Garg, J.E.Wilkes, "Principle and Application of GSM", Pearson Education, 5th edition, 2008.
- 2. V.K.Garg, "IS-95 CDMA & CDMA 2000", Pearson Education, 4th edition, 2009.
- 3. T.S.Rappaport, "Wireless Communications Principles and Practice", 2nd edition, PHI, 2002.
- 4. William C.Y.Lee, "Mobile Cellular Telecommunications", 2nd edition, TMH, 1995.

- 1. Asha Mehrotra, "A GSM system Engineering" Artech House Publishers Bosten, London, 1997.
- 2. Aditya K. Jagannatham, "Principles of Modern Wireless Communication Systems", Publisher-McGraw Hill.
- 3 . William C. Y. Lee, "Mobile Communications Engineering", Mc Graw Hill Publications
- 4. David Tse and Pramod Viswanath, "Fundamentals of Wireless Communications", Publisher - Cambridge University Press.

Course T	ïtle	Advanced	Comm	unica	tion	Network	M.Te	ch. I Sem		
Course C	ode	Category	Hou	rs/We	ek	Credits	Maxim	um Marks		
185410	8	PE II	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
			3	0	0	3	40	60	100	
Mid Exar	m Duration: 2Hrs End Exam Duration: 3Hrs									
Course O	 Course Objectives: To Understand advanced concepts in Communication Networking. To Design and develop protocols for Communication Networks. 									
Course O	utcon	nes: At the er	d of this	s cours	e, stu	dents will be	able to			
CO 1	Understand advanced concepts in Communication Networking									
CO 2	Design and develop protocols for Communication Networks									
CO 3	Under	stand the med	hanisms	in Qu	ality o	of Service in	networking			
CO 4	Optim	ize the Netwo	ork Desi	gn.						

Overview of Internet-Concepts, challenges and history: Overview of -ATM. TCP/IP Congestion and Flow Control in Internet-Throughput analysis of TCP congestion control. TCP for high bandwidth delay networks. Fairness issues in TCP.

UNIT II

Real Time Communications over Internet. Adaptive applications: Latency and throughput Issues, Integrated Services Model (intServ). Resource reservation in Internet. RSVP, Characterization of Traffic by Linearly Bounded Arrival Processes (LBAP). Leaky bucket algorithm and its properties.

UNIT III

Packet Scheduling Algorithms-requirements and choices: Scheduling guaranteed service connections. GPS, WFQ and Rate proportional algorithms. High speed scheduler design. Theory of Latency Rate servers and delay bounds in packet switched networks for LBAP traffic, Active Queue Management - RED, WRED and Virtual clock. Control theoretic analysis of active queue management.

UNIT IV

IP address lookup-challenges: Packet classification algorithms and Flow Identification-

Grid of Tries, Cross producting and controlled prefix expansion algorithms.

Admission control in Internet: Concept of Effective bandwidth, Measurement based admission control, Differentiated Services in Internet (DiffServ), DiffServ architecture and framework.

UNIT V

IPV4, IPV6, IP tunnelling, IPswitching and MPLS: Overview of IP over ATM and its evolution to IP switching, MPLS architecture and framework, MPLS Protocols, Traffic engineering issues in MPLS.

Text Books

- 1. Jean Wairand and Pravin Varaiya, "High Performance Communications Networks", 2nd edition, 2000.
- 2. Jean Le Boudec and Patrick Thiran, "Network Calculus A Theory of Deterministic Queueing Systems for the Internet", Springer Veriag, 2001.
- 3. Zhang Wang, "Internet QoS", Morgan Kaufman, 2001.
- 4. Anurag Kumar, D. Manjunath and Joy Kuri, "Communication Networking: An Analytical Approach", Morgan Kaufman Publishers, 2004.

- 1. George Kesidis, "ATM Network Performance", Kluwer Academic, Research Papers, 2005.
- 2. Principles of Wireless Networks Kaveh Pah Laven and P. Krishna Murthy, 2002, PE
- 3. Wireless Digital Communications Kamilo Feher, 1999, PHI.
- 4. Wireless Communication and Networking William Stallings, 2003, PHI.

Course 7	Fitle	Researc	h Meth	odolo	gy ai	nd IPR	M.Te	ch. I Sem		
Course (Code	Category	Hou	rs/We	ek	Credits	Maxim	um Marks	i	
18001	09		L T P C Inter Assess		Continuous Internal Assessment	End Exams	Total			
			2	0	0	2	40	60	100	
Mid Exa	m Du	ration: 2Hrs					End Exam Dura	ation: 3Hrs	5	
Course (Dbject •	t ives: To understand	researc	h prob	lem fo	ormulation				
	•	To analyze res	search re	elated i	nform	ation.				
Course (Dutco	mes: At the er	nd of this	s cours	e, stu	dents will be	able to			
CO 1	CO1 Understand research problem formulation									
CO 2	Analy	ze research re	lated in	format	ion					
CO 3	Unde	rstand Intellec	tual Pro	pertv	rights	and Patent r	rights			

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations.

UNIT-II

Effective literature studies approaches, analysis Plagiarism, Research ethics, Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee

UNIT-III

Nature of Intellectual Property: Patents, Designs, Trademarks and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

UNIT- IV

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.

UNIT-V

New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

Text Books:

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students""
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- 3. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners"

4. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.

- 1. Mayall, "Industrial Design", McGraw Hill, 1992.
- 2. Niebel, "Product Design", McGraw Hill, 1974.
- 3. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 4. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.

Course T	`itle	DIGITA	L SYST	'EM DE	ESIGN I	LAB	M.Te	ch. I Sem	l		
Course C	ode	Category	Ho	ours/We	ek	Credits	Maxin	Maximum marks			
185411	0	Core	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
	0 0 4 2 50 50 10										
							End Exam	Duration	: 3Hrs		
Course O	bjecti	ives:									
	•]	To Simulation a	nd Verif	fication	of Logic	circuits.					
Course O	utcon	nes: On success	ful com	pletion of	of this c	ourse, the	students will be	e able to			
CO 1 I	Identify, formulate, solve and implement problems in Adders, multipliers, Flip-Flops,										
(Counters etc using RTL design tools.										
CO 2 U	Jse El	DA tools like M	lentor G	raphics	and Xili	inx.					

Experiments:

- 1. Simulation and Verification of Logic Gates.
- 2. Design and Simulation of Half adder, Serial Binary Adder, Multi Precession Adder, Carry Look Ahead Adder and Full Adder.
- 3. Simulation and Verification of Decoder, MUXs, Encoder using all Modeling Styles.
- 4. Modeling of Flip-Flops with Synchronous and Asynchronous reset.
- 5. Design and Simulation of Counters-Ring Counter, Johnson Counter, and Up-Down
- 6. Counter, Ripple Counter.
- 7. Design of a N-bit Register of Serial-in Serial-out, Serial in Parallel out, Parallel in serial

out and Parallel in Parallel Out.

- 8. Design of Sequence Detector (Finite State Machine-Mealy and Moore Machines).
- 9. 4-Bit Multiplier, Divider. (for 4-Bit Operand)
- 10. Design ALU to Perform –ADD, SUB, AND-OR, 1"s and 2"s COMPLIMENT, Multiplication, Division.
- 11. Design of Shift register.

Course T	Title	Digital Con	nmunic	ation Te	echniqu	es Lab	M.Teo	ch. I Sem		
Course C	Code	Category	Hours/Week Credits			Maxin	Maximum marks			
185411	1	Core	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
			0	0	4	2	50	50	100	
							End Exam	Duration	: 3Hrs	
Course O	bjecti • 7	ives: To Simulate and	generat	e variou	ıs modu	lated and c	lemodulated sig	gnals.		
Course O	utcon	nes: On success	ful com	pletion of	of this c	ourse, the	students will b	e able to		
CO 1 I	Identify, formulate, solve and implement problems in communication systems									
CO 2 U	Use si	mulation like N	latlab / (COM SI	Μ					

Experiments:

- 1. Simulate generation and detection of ASK Signal
- 2. Simulate generation and detection of FSK Signal
- 3. Simulate generation and demodulation of BPSK Signal
- 4. Simulate Rayleigh Fading Channel Using Either Clarke's Model or Jake's Model for different Doppler Spreads (Ex. 50 Hz and 100 Hz)
- 5. Generation of Maximal Sequences and Gold Sequences.
- 6. Performance Evaluation of QPSK System over Gaussian AWGN Channel.
- 7. Performance Evaluation of QPSK System over Rayleigh Fading Channel.
- 8. M-ary QAM with AWGN fading
- 9. Equalization of Multipath Channel using LMS or RLS Algorithms.
- 10. Performance Evaluation of RAKE Receiver over Slow Fading Channel.
- 11. Error detection and correction using CRC method.
- 12. Generation of Hamming code sequence.
- 13. Correlation: Auto And Cross.

Course	Title	DISAS	TER M	IANA	GEM	IENT	M.Te	ch. I Sem			
Course	Code	Category	Hou	rs/We	ek	Credits	Maxim	um Marks			
1870A	\02	Audit Course	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
			2	0	0	2	40	0	40		
Mid Exa	am Du	ration: 2Hrs					End Exam Dura	ation: 3Hrs	5		
Course	Objectives: • To Understand the strengths and weaknesses of disaster management, approaches										
	• To Understand the strengths and weaknesses of disaster management approaches, planning and programming in different countries, particularly their home country or the countries they work in.										
Course	Outcor	mes: At the en	nd of this	cours	e, stud	dents will be	able to				
CO 1	Demo	onstrate a criti	cal under	rstandi	ng of	key concept	s in disaster risk	reduction a	nd		
	huma	nitarian respo	nse.								
CO 2	Evalu	ate disaster ri	sk reduct	tion an	d hun	nanitarian re	sponse policy and	d practice fr	om		
	multip	ple perspective	es.								
CO 3	Devel	op an underst	anding o	f stand	lards o	of humanitai	rian response and	practical re	elevance		
	in spe	cific types of	disasters	and co	onflic	t situations					
CO 4	Under and pr they v	rstand the stre rogramming is vork in.	ngths an n differe	d weak	tnesse ntries,	es of disaster particularly	management ap their home count	proaches, p try or the co	olanning ountries		

UNIT-I

Introduction Disaster: Definition, Factors And Significance; Difference Between Hazard And Disaster; Natural And Manmade Disasters: Difference, Nature, Types And Magnitude. **Repercussions Of Disasters And Hazards:** Economic Damage, Loss Of Human And Animal Life, Destruction Of Ecosystem.

UNIT-II

Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.

UNIT-III

Disaster Prone Areas In India: Study Of Seismic Zones; Areas Prone To Floods And Droughts, Landslides And Avalanches; Areas Prone To Cyclonic And Coastal Hazards With Special Reference To Tsunami; Post-Disaster Diseases And Epidemics.

UNIT-IV

Disaster Preparedness And Management Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness.

UNIT-V

Risk Assessment: Disaster Risk, Concept And Elements, Disaster Risk Reduction, Global And National Disaster Risk Situation. Techniques Of Risk Assessment, Global Co-Operation In Risk Assessment And Warning, People's Participation In Risk Assessment. Strategies for Survival.

Disaster Mitigation Meaning, Concept And Strategies Of Disaster Mitigation, Emerging Trends In Mitigation. Structural Mitigation And Non-Structural Mitigation, Programs Of Disaster Mitigation In India.

Text Books:

1. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company.

2. Sahni, PardeepEt.Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New Delhi.

3. Goel S. L., Disaster Administration And Management Text And Case Studies" ,Deep &Deep Publication Pvt. Ltd., New Delhi.

Course	Title	Microconti Digit	ollers al Sign	and P al Pro	rogr ocess	ammable ors	M.Teo	ch II Sem.			
Course	Code	Category	Hou	rs/We	ek	Credits	Maxim	um Marks			
18542	201	Core 3	L	Т	Р	С	Continuous Internal Assessment	Continuous Internal AssessmentEnd ExamsTo			
			3	0	0	3	40	60	100		
Mid Exa	am Du	ration: 2Hrs					End Exam Dura	ation: 3Hrs	5		
Course	Objec • •	tives: To understand To understand	Microc DSP Pr	ontroll ocesso	ers. ors.						
Course	Outco	mes: At the en	d of this	s cours	e, stu	dents will be	able to				
CO 1	Com	pare and select	ARM p	rocess	or cor	e based SoC	with several feat	tures/periph	erals		
	based on requirements of embedded applications										
CO 2	Ident	Identify and characterize architecture of Programmable DSP Processors									
CO 3	Deve	Develop small applications by utilizing the ARM processor core and DSP processor									
	based	l platform			_	_					

ARM Cortex-M3 processor: Applications, Programming model – Registers, Operation modes, Exceptions and Interrupts, Reset Sequence Instruction Set, Unified Assembler Language, Memory Maps, Memory Access Attributes, Permissions, Bit-Band Operations, Unaligned and Exclusive Transfers, Pipeline, Bus Interfaces.

UNIT- II

Exceptions, Types, Priority, Vector Tables, Interrupt Inputs and Pending behaviour, Fault Exceptions, Supervisor and Pendable Service Call, Nested Vectored Interrupt Controller, Basic Configuration, SYSTICK Timer, Interrupt Sequences, Exits, Tail Chaining, Interrupt Latency.

UNIT- III

LPC 17xx microcontroller- Internal memory, GPIOs, Timers, ADC, UART and other serial interfaces, PWM, RTC, WDT

UNIT- IV

Programmable DSP (P-DSP) Processors: Harvard architecture, Multi port memory, architectural structure of P-DSP- MAC unit, Barrel shifters, VLIW architecture, Introduction to TI DSP rocessor family, TMS320C6000 series, architecture study, data paths, cross paths.

UNIT- V

Introduction to Instruction level architecture of C6000 family, Assembly Instructions memory addressing, for arithmetic, logical operations, Code Composer Studio for application development for digital signal processing, On chip peripherals, Processor benchmarking.

Text Books:

- 1. Joseph Yiu, "The definitive guide to ARM Cortex-M3", Elsevier, 2nd Edition
- 2. Venkatramani B. and Bhaskar M. "Digital Signal Processors: Architecture, Programming and Applications", TMH, 2nd Edition
- 3. Sloss Andrew N, Symes Dominic, Wright Chris, "ARM System Developer's Guide: Designing and Optimizing", Morgan Kaufman Publication
- 4. Steve furber, "ARM System-on-Chip Architecture", Pearson Education

- 1. Frank Vahid and Tony Givargis, "Embedded System Design", Wiley
- 2. Technical references and user manuals on www.arm.com, NXP Semiconductor
- 3. www.nxp.com and Texas Instruments <u>www.ti.com</u>.
- 4. Peter Pirsch, "Architectures For Digital Signal Processing", Wiley Publications.

Course T	'itle	Advan	ced D	SP		M.Teo	ch II Sem.				
Course C	ode Category	Hou	rs/We	ek	Credits	Maxim	um Marks				
185420	2 Core 4	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total			
		3	0	0	3	40	60	100			
Mid Exa	n Duration: 2Hrs End Exam Duration: 3Hrs										
Course C	 Course Objectives: To understand theory of different filters and algorithms\ To understand theory of multirate DSP, solve numerical problems and write algorithms. To understand theory of prediction and solution of normal equations 										
•	To know applicat	ions of D	OSP at	block	level						
Course O	utcomes: At the en	nd of this	cours	e, stuc	dents will be	able to					
CO 1	Apply Multirate systems and DSP in signal processing.										
CO 2	Realize linear prediction filters.										
CO 3	Estimate Spectra from	om Finit	e-Dura	tion (Observations	of Signals.					

Overview : Discrete-Time Signals, Sequences and sequence Representation, Discrete-Time Systems, Time-Domain Characterization and Classification of LTI Discrete-Time Systems. The Continuous-Time Fourier Transform, The discrete-Time Fourier Transform, energy Density Spectrum of a Discrete-Time Sequence, Band-Limited Discrete-Time signals, The Frequency Response of LTI Discrete-Time System.

UNIT-II

Multi rate DSP, Decimators and Interpolators, Sampling rate conversion, multistage decimator & interpolator, poly phase filters, QMF, digital filter banks, Applications in Multi rate systems.

UNIT- III

Linear prediction & optimum linear filters, stationary random process, forward-backward linear prediction filters, solution of normal equations, AR Lattice and ARMA Lattice-Ladder Filters, Wiener Filters for Filtering and Prediction.

UNIT- IV

Estimation of Spectra from Finite-Duration Observations of Signals. Nonparametric Methods forPower Spectrum Estimation, Parametric Methods for Power Spectrum Estimation, Minimum-Variance Spectral Estimation, Eigenanalysis Algorithms for Spectrum Estimation.

UNIT-V

Application of DSP: Dual-Tone Multifrequency Signal Design, Spectral analysis of Sinusoidal Signals, Spectral analysis of nonstationary signals, Musical sound processing, Discrete-time analytic signal generation, Subband coding of speech and audio signals, transmultiplexers and Oversampling A/D and D/C converters.

TEXTBOOKS:

1. Digital Signal Processing by Sanjit K Mitra, Tata MCgraw Hill Publications.

2. Digital Signal Processing Principles, Algorithms, Applications by J G Proakis, D G anolokis, PHI.

3. Dr. Shaila D. Apte, "Advanced Digital Signal Processing", Wiley.

4. Jian Wang, Barmak Honarvar Shakibaei Asli, "Advanced Digital Signal Processing", Scitus Academics.

REFERENCES:

1. Discrete-Time Signal Processing by A V Oppenhiem, R W Schafer, Pearson Education.

2. DSP- A Practical Approach- Emmanuel C Ifeacher Barrie. W. Jervis, Pearson Education.

3. Modern spectral Estimation techniques by S. M. Kay, PHI, 1997.

4. Saeed V. Vaseghi, "Advanced Digital Signal Processing and Noise Reduction", Wiley; 4th edition.

Course T	tle Advance	d Comp	uter	Arch	itecture	M.Teo	ch II Sem.				
Course C	ode Category	Hou	rs/We	ek	Credits	Maxim	um Marks				
185420	B PE III	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total			
		3	0	0	3	40	60	100			
Mid Exar	Duration: 2Hrs	ration: 2Hrs End Exam Duration: 3Hrs									
Course O • T • T • T • T	ojectives: b) learn about the rameters. b) provide knowled b) teach multiproce b) know the instruc	evolutio ge about ssors sys tion pipe	n of c instru tem in <u>line de</u>	ompu ction tercor	ter architect sets of differ mections.	ture and its performer to the second se	ormance m	easuring			
Course O	itcomes: At the en	nd of this	s cours	e, stu	dents will be	able to					
CO 1	o make student le	arn the a	dvance	ed con	cepts related	d to computer arc	hitecture ar	nd			
S	torage systems										
CO 2	Understand parallelism and pipelining concepts, the design aspects and challenges.										
CO 3	tudy and analyze systems	the high	perfori	mance	scalable M	ultithreaded and 1	multiproces	sor			

Fundamentals of Computer Design: Technology trends, cost- measuring and reporting performance quantitative principles of computer design.

Instruction Set Principles and Examples: classifying instruction set- memory addressingtype and size of operands- addressing modes for signal processing operations in the instruction set, instructions for control flow, encoding an instruction set, the role of compiler

UNIT II

Instruction Level Parallelism (ILP): overcoming data hazards reducing branch costs, high performance instruction delivery, hardware based speculation, limitation of ILP

ILP Software Approach: compiler techniques- static branch protection, VLIW approach, H.W support for more ILP at compile time- H.W verses S.W solutions

UNIT III

Memory Hierarchy Design: cache performance, reducing cache misses penalty and miss rate, virtual memory, protection and examples of VM.

UNIT IV

Multiprocessors and Thread Level Parallelism: Symmetric shared memory architectures, distributed shared memory, Synchronization, multi threading.

UNIT V

Storage Systems- Types, Buses, RAID, errors and failures, bench marking a storage device, designing a I/O system.

Interconnection Networks and Clusters: Interconnection network media, practical issues in interconnecting networks- examples, clusters, designing a Cluster

Text Books:

- 1. Computer Architecture A quantitative approach 3rd edition John L. Hennessy & David A. Patterson Morgan Kufmann (An Imprint of Elsevier).
- 2. Kai Hwang and A.Briggs "Computer Architecture and parallel processing", International Edition McGraw-Hill.
- 3. Kai Hwang, "Advanced Computer Architecture", McGraw Hill Education, 1993.
- 4. Dezso Sima, Terence Fountain, Peter Kacsuk, "Advanced Computer Architectures", Pearson.

- 1. H P Hayes, "Computer Architecture and Organization", McGraw Hill, 1978.
- 2. K. Hwang & amp; Briggs, "Computer Architecture and Parallel Processing", McGraw Hill International, 1986
- 3. M J Flynn, "Computer Architecture: Pipelined and Parallel Processor Design", Narosa Publishing House, 2012.
- 4. M Sasikumar, D Shikkare and P Raviprakash, "Introduction to Parallel Processing", PHI, 2014.

Course 7	Fitle	IOI	and A	Applic	atio	15	M.Tee	ch II Sem.		
Course C	Code	Category	Hou	rs/We	ek	Credits	Maxim	um Marks		
185420	04	PE III	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
			3	0	0	3	40	60	100	
Mid Exa	m Du	ration: 2Hrs					End Exam Dura	ation: 3Hrs	5	
Course C	Object o unde	t ives: erstand the bas	ics of IO	DT.						
• T	o stud	y the Program	ming Us	sing Aı	duinc).				
• T	o prov	vide the knowle	edge abo	out sen	sors a	and transduce	ers.			
Course C	Jutco	mes: At the en	d of this	s cours	e, stu	dents will be	able to			
CO 1	Understand the concept of IOT and M2M									
CO 2	Study IOT architecture and applications in various fields.									
CO 3	Study the security and privacy issues in IOT.									

IoT& Web Technology The Internet of Things Today, Time for Convergence, Towards the IoT Universe, Internet of Things Vision, IoT Strategic Research and Innovation Directions, IoT Applications, Future Internet Technologies, Infrastructure, Networks and Communication, Processes, Data Management, Security, Privacy & Trust, Device Level Energy Issues, IoT Related Standardization, Recommendations on Research Topics.

UNIT II

M2M to IoT – A Basic Perspective– Introduction, Some Definitions, M2M Value Chains, IoT Value Chains, An emerging industrial structure for IoT, The international driven global value chain and global information monopolies. M2M to IoT-An Architectural Overview– Building an architecture, Main design principles and needed capabilities, An IoT architecture outline, standards considerations.

UNIT III

IoT Architecture -State of the Art – Introduction, State of the art, Architecture Reference Model Introduction, Reference Model and architecture, IoT reference Model, IoT Reference Architecture- Introduction, Functional View, Information View, Deployment and Operational View, Other Relevant architectural views.

UNIT IV

IoT Applications for Value Creations Introduction, IoT applications for industry: Future Factory Concepts, Brownfield IoT, Smart Objects, Smart Applications, Four Aspects in your Business to Master IoT, Value Creation from Big Data and Serialization, IoT for Retailing Industry, IoT For Oil and Gas Industry, Opinions on IoT Application and Value for Industry, Home Management, e-Health.

UNIT V

Internet of Things Privacy, Security and Governance Introduction, Overview of Governance, Privacy and Security Issues, Contribution from FP7 Projects, Security, Privacy and Trust in IoT-Data-Platforms for Smart Cities, First Steps Towards a Secure Platform, Smartie Approach. Data Aggregation for the IoT in Smart Cities, Security.

Text Books:

- 1. Vijay Madisetti and ArshdeepBahga, "Internet of Things (A Hands-on-Approach)", 1st
- 2. Edition, VPT, 2014.
- 3. Francis daCosta, "Rethinking the Internet of Things: A Scalable Approach to Connecting
- 4. Everything", 1stEdition, Apress Publications, 2013.

- 1. CunoPfister, "Getting Started with the Internet of Things", OReilly Media, 2011.
- 2. Dr. Ovidiu Vermesan, Dr. Peter Friess, Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems, River Publishers, 2013.
- 3. Catherine Mulligan, David Boyle, Jan Holler, Stamatis Karnouskos, and Vlasios Tsiatsis, "From Machine-to-Machine to the Internet of Things: Introduction to a Ne Age of Intelligence", Elsevier, 2014.
- 4. Boris Adryan, Dominik Obermaier, Paul Fremantle, "The Technical Foundations of IoT", Artech Houser Publishers, 2017.

Course	Title	VLSI S	IGNAL	PRO	CES	SING	M.Tee	ch II Sem.			
Course	Code	Category	Hou	rs/We	ek	Credits	Maxim	um Marks			
18542	205	PE III	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
			3	0	0	3	40	60	100		
Mid Exa	am Du	ration: 2Hrs					End Exam Dura	ation: 3Hrs	5		
Course	 Course Objectives: To understand DSP algorithms, its DFG representation. To understand algorithmic strength reduction in filters. 										
Course	Outco	mes: At the er	id of this	cours	e, stud	ients will be	able to				
CO 1	Acqu	ired knowledg	e about	DSP al	lgorith	nms, its DFC	b representation,	pipelining a	ind		
<u> </u>	parall	el processing	approaci	nes				•			
CO 2	Abilit	ty to acquire k	nowledg	e abou	it retir	ning technic	lues, folding and	register			
	minin	nization path p	problems								
CO 3	Abilit	ty to have know	wledge a	bout a	lgorit	hmic strengt	th reduction techr	niques and p	parallel		
	proce	ssing of FIR a	nd IIR d	igital f	ilters						
CO 4	Acqu	ired knowledg	e about	finite v	word-l	ength effect	s and round off n	oise compu	tation		
	in DS	P systems									

Introduction to DSP systems, Pipelined and parallel processing.

UNIT II

Iteration Bound, Retiming, unfolding, algorithmic strength reduction in filters and

Transforms.

UNIT III

Systolic architecture design, fast convolution, pipelined and parallel recursive and

adaptive filters, Scaling and round off noise.

UNIT IV

Digital lattice filter structures, bit level arithmetic, architecture, redundant arithmetic.

UNIT V

Numerical strength reduction, synchronous, wave and asynchronous pipe lines, low

power design.

Text Books:

- 1. Keshab K. Parthi , VLSI Digital signal processing systems, design and implementation, Wiley, Inter Science, 1999.
- 2. Mohammad Isamail and Terri Fiez, Analog VLSI signal and information processing, McGraw Hill, 1994
- 3. S.Y. Kung, H.J. White House, T. Kailath, VLSI and Modern Signal Processing, Prentice Hall, 1985.
- 4. Hongjiang Song," VLSI Analog Signal Processing Circuits", Lulu.com

Reference Books:

- 1. Lulu.com," VLSI Digital Signal Processing Systems: Design and Implementation", Wiley.
- 2. M. Boyomi, "VLSI Signal Processing Technology", Springer.

Course Tit	tle Detection	and Est	timati	ion o	f Signals	M.Teo	ch II Sem.			
Course Co	de Category	Hou	rs/We	ek	Credits	Maximum Marks				
1854206	PE IV	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
		3	0	0	3	40	60	100		
Mid Exam	Duration: 2Hrs End Exam Duration: 3Hrs									
Course Ob • •	 Course Objectives: To provide knowledge about various estimation techniques like parametric and non parametric estimation techniques. To provide knowledge for finding good estimators. To provide enough knowledge for detection of signal in noise and estimate the signals in the presence of noise. 									
Course Ou	Se Outcomes: At the end of this course, students will be able to									
CO 1 U	Understand Interval Estimates.									
CO 2 A	Analyze Detection of Signals in Noise.									
CO3 A	pply Estimation o	f signals	in No	ise.						

UNIT-I

Introduction to Discrete-Time Signals: Fourier Transform of a discrete time signal. Amplitude and phase spectrum. Frequency content and sampling rates. Transfer function. Frequency response.

Random – Discrete-time signals: Review of probability – Random data –Filtered signals – Autocorrelation and power spectral density.

UNIT-II

Statistics: Measurements, Nonparametric Estimators of Probability Distribution and Density Functions, Point Estimators of Parameters, Measures of the Quality of Estimators, Introduction to Interval Estimates, Distribution of Estimators, Tests of Hypotheses, Simple Linear Regression, Multiple Linear Regression.

UNIT-III

Detection of Signals in Noise: Minimum probability of Error criterion, Neyman-Pearson criterion for Radar detection of constant and variable, amplitude signals, Matched Filters, optimum formulation, detection of random signals, simple problems thereon with multisample cases.

UNIT-IV

Estimation of signals in Noise: Linear mean squared estimation, non-linear estimates, MAP and ML estimates, maximum likelihood estimate of parameters of linear system, simple problems theoreon.

UNIT- V

Recursive Linear Mean Squared Estimation: Estimation of a signal parameter. Estimation of time-varying signals, Kalman filtering, Filtering signals in noise, Treatment restricted to two variable case only, Simple problems.

Text Books:

- 1. Signal processing: Discrete Spectral analysis, Detection and Estimation, Mischa Schwartz and Leonard Shaw, Mc-Graw Hill Book Company, 1975.
- 2. Shanmugam and Breipohl, 'Detection of signals in noise and estimation', John Wiley & Sons, New York, 1985.
- 3. H. Vincent Poor, "An Introduction to Signal Detection and Estimation", Springer.
- 4. Bernard C. Levy, "Principles of Signal Detection and Parameter Estimation", Springer.

Reference Books:

- 1. E.L. Van Trees, Detection, Estimation and Modulation Theory, Wiley, New York, 1968.
- 2. Srinath, Rajasekaran & Viswanathan, Introduction to statistical Signal processing with Applications, Prentice Hall of India, New Delhi.

Course Title	OPT	ICAL	NETV	VOR	KS	AS M.Tech II Sem.			
Course Code	Category	Category Hours/Week				Maximum Marks			
1854207	PE IV	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
		3	0	0	3	40	60	100	
Mid Exam Du	ration: 2Hrs					End Exam Dura	ation: 3Hrs	5	
Course Object • To und • To und	tives: erstand further erstand networ	technol k manaş	ogy de gement	evelop t funct	ments for fu tions.	ture enhanced ne	twork.		

Course	Outcomes: At the end of this course, students will be able to
CO 1	Understand Client Layers of the Optical Layer.
CO 2	Analyze network management functions and Photonic packet switching.
CO3	Apply statistical dimensioning models.

Client Layers of the Optical Layer: SONET/SDH, Multiplexing, SONET/SDH Layers, SONET Frame Structure, SONET/SDH Physical Layer, Elements of a SONET/SDH Infrastructure optical transport network, Frame Structure, Multiplexing, IP- routing and forwarding, multiprotocol label switching - Labels and Forwarding, Quality of Service, Signaling and Routing

UNIT II

WDM network elements: optical line terminals and amplifiers, optical add/drop multiplexers, OADM architectures, reconfigurable OADM, optical cross connects.

UNIT III

Control and management: network management functions, optical layer services and interfacing, performance and fault management, configuration management.

UNIT IV

Network Survivability: protection in SONET/SDH & client layer.

WDM network design: LTD and RWA problems, dimensioning wavelength routing

networks, statistical dimensioning models.

UNIT V

Photonic packet switching: Optical time division multiplexing, synchronization, header processing, buffering, burst switching, test beds.

Text Books:

- 1. Rajiv Ramaswami, Sivarajan, Sasaki, "Optical Networks: A Practical Perspective", MK, Elsevier, 3 rd edition, 2010.
- 2. C. Siva Ram Murthy and Mohan Gurusamy, "WDM Optical Networks: Concepts Design, and Algorithms", PHI, EEE, 2001.
- 3. Kumar N. Sivarajan, "Optical Networks: A Practical Perspective", Kindle.
- 4. Partha Pratim Sahu, "Fundamentals of Optical Networks and Components", CRC press.

- 1. Debasish Datta, "Optical Networks", OUP Oxford; 1st edition.
- 2. Uyless Black, "Optical Networks", Pearson Education.
- 3. Debra Cameron," Optical Networking", John Wiley & Sons.
- 4. Schmutzer and Peter Tomsu," Next Generation Optical Networks", Prentice Hall; 1st edition.

Course Title Biomedical Signal Processing	M.Tech II Sem.
---	----------------

Course	Code	Category	Hou	rs/We	ek	Credits	Maxim	um Marks		
18542	08	PE IV	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
			3	0	0	3	40	60	100	
Mid Exam Duration: 2HrsEnd Exam Duration: 3Hrs										
Course	 Course Objectives: To Understand different types of biomedical signal. To analyze different biomedical signals. 									
Course	Outcor	nes: At the en	d of this	s cours	e, stud	dents will be	able to			
CO 1	O 1 Understand different types of biomedical signal.									
CO 2) 2 Identify and analyze different biomedical signals.									
CO 3	Apply	various biom	edical si	ignal p	rocess	sing method	s.			

Introduction: Acquisition, Generation of Bio-signals, Origin of bio-signals, Types of bio-signals, Study of diagnostically significant bio-signal parameters

UNIT II

Data Compression Techniques: Lossy and Lossless data reduction Algorithms. ECG data compression using Turning point, AZTEC, CORTES, Huffman coding, vector quantization, DICOM Standards

UNIT III

Cardiological Signal Processing: Pre-processing, QRS Detection Methods, Rhythm analysis, Arrhythmia Detection Algorithms, Automated ECG Analysis, ECG Pattern Recognition. **Adaptive Noise Cancelling:** Principles of Adaptive Noise Cancelling, Adaptive Noise Cancelling with the LMS Adaptation Algorithm, Noise Cancelling Method to Enhance ECG Monitoring, Fetal ECG Monitoring.

UNIT IV

Signal Averaging, Polishing : Mean and trend removal, Prony's method, Prony's Method based on the Least Squares Estimate, Linear prediction, Yule – Walker (Y –W) equations, Analysis of Evoked Potentials.

UNIT V

Neurological Signal Processing: Modeling of EEG Signals, Detection of spikes and spindles Detection of Alpha, Beta and Gamma Waves. Auto Regressive (A.R.) modeling of seizure EEG. Sleep Stage analysis, Inverse Filtering, Least squares and polynomial modeling.

Text Books:

- 1. Rangaraj M. Rangayyan Biomedical Signal Analysis. IEEE Press, 2001.
- 2. D. C. Reddy, Biomedical Signal Processing- principles, and techniques, Tata McGraw-Hill, 2005.
- 3. Willis J. Tompkins, Biomedical Digital Signal Processing, PHI.
- 4. Neeraj Vyas," Biomedical Signal Processing", Kindle.

Reference Books:

1. Ganesh Naik, "Biomedical Signal Processing: Advances in Theory, Algorithms and Applications", Springer.

2. Walid A. Zgallai, "Biomedical Signal Processing and Artificial Intelligence in Healthcare", Academic Press; 1st edition.

- 3. Amine Nait-Ali, "Advanced Biosignal Processing", Springer; 2009th edition.
- 4. Joseph D. Bronzino, Hualou Liang, Donald R. Peterson, "Biosignal Processing: Principles and Practices", CRC.

Course	Title	Microcontrol Si	lers and gnal Pr	l Progra ocessors	ammab s Lab	le Digital	M.Tech. II Sem				
Course	Code	Category	He	Hours/Week Credits Maximum marks							
18542	1854210CoreLTPCContinuous Internal AssessmentEnd Exams								Total		
	0 0 4 2 50 50 10										
							End Exam	Duration	: 3Hrs		
Course	Objecti •]	ives: Fo write the pro	grammi	ng for D	SP proc	essors for	various applica	ations.			
Course	Outcon	nes: On success	sful com	pletion	of this c	ourse, the	students will be	e able to			
CO 1	1 Install, configure and utilize tool sets for developing applications based on ARM										
	processor core SoC and DSP processor.										
CO 2	O 2 Develop prototype codes using commonly available on and off chip peripherals on the										
	Cortex	M3 and DSP of	levelopr	nent boa	ards.						

List of Assignments:

Part A) Experiments to be carried out on Cortex-M3 development boards and using GNU toolchain

- 1. Blink an LED with software delay, delay generated using the SysTick timer.
- 2. System clock real time alteration using the PLL modules.
- 3. Control intensity of an LED using PWM implemented in software and hardware.

4. Control an LED using switch by polling method, by interrupt method and flash the LED once every five switch presses.

- 5. UART Echo Test.
- 6. Take analog readings on rotation of rotary potentiometer connected to an ADC channel.
- 7. Temperature indication on an RGB LED.
- 8. Mimic light intensity sensed by the light sensor by varying the blinking rate of an LED.
- 9. Evaluate the various sleep modes by putting core in sleep and deep sleep modes.
- 10. System reset using watchdog timer in case something goes wrong.
- 11. Sample sound using a microphone and display sound levels on LEDs.

Part B) Experiments to be carried out on DSP C6713 evaluation kits and using Code Composer

Studio (CCS)

- 1. To develop an assembly code and C code to compute Euclidian distance between any two points
- 2. To develop assembly code and study the impact of parallel, serial and mixed execution
- 3. To develop assembly and C code for implementation of convolution operation
- 4. To design and implement filters in C to enhance the features of given input sequence/signal

Course	Title	Advanced	Digital	Signal H	M.Teo	ch. II Sen	1				
Course	Code	Category Hours/Week Credits Maximum marks									
18542	211	Core	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
	0 0 4 2 50 50 100										
							End Exam	Duration	: 3Hrs		
Course	Objecti	ves:									
	•]	To Design and v	erify va	rious fil	ters.						
Course	Outcon	nes: On success	ful com	pletion of	of this c	ourse, the	students will be	e able to			
CO 1	Design different digital filters in software.										
CO 2	Apply various transforms in time and frequency.										
CO 3	Perfor	m decimation a	nd inter	polation	•						

List of Assignments:

- 1. Basic Signal Representation
- 2. Auto Correlation And Cross Correlation
- 3. Stability Using Hurwitz Routh Criteria
- 4. Sampling FFT Of Input Sequence
- 5. Butterworth Low pass And High pass Filter Design
- 6. Chebychev Type I,II Filter
- 7. Normal Equation Using Levinson Durbin
- 8. Decimation And Interpolation Using Rationale Factors
- 9. Maximally Decimated Analysis DFT Filter
- 10. Cascade Digital IIR Filter Realization
- 11. Convolution And M Fold Decimation &PSD Estimator
- 12. Estimation Of PSD
- 13. Separation Of T/F
- 14. Parallel Realization of IIR filter

Course 7	ENGLP	ISH FC APER	R RF WRIT	ESEA CING	RCH	M.Teo	ch II Sem.			
Course (Code Category	Hours/Week Cre				Maximum Marks				
1870A	01 Audit Course	Audit CourseLTPCContinuous Internal AssessmentEnd Exams								
		2	0	0	0	40	0	40		
Mid Exa	m Duration: 2Hrs				End Exam Dura	ation: 3Hrs	5			
Course (Course Objectives: Understand that how to improve your writing skills and level of readability Learn about what to write in each section Understand the skills needed when writing a Title Ensure the good quality of paper at very first-time submission 									
Course (Dutcomes: At the en	d of this	s cours	e, stu	dents will be	able to				
CO 1	Apply the writing skill while writing the results.									
CO 2	Review the Literature, Methods, Results, Discussion, Conclusions.									
CO 3	Understand Word Order, Breaking up long sentences, Structuring Paragraphs and									
	Sentences.									

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

UNIT II

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticising, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction, Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check.

UNIT III

key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature,

UNIT IV

Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions

UNIT V

Useful phrases, how to ensure paper is as good as it could possibly be the first- time submission

Suggested Studies:

1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)

2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press.

Course	Title	Microco	mpute	r Syst	tem I	Design	M.Tec	h III Sem.			
Course	Code	Category	Hou	rs/We	eek Credits Maximum Marks						
1854301		PE V	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
			3	0	0	3	40 60 100				
Mid Exa	am Du	ration: 2Hrs					End Exam Dura	ation: 3Hrs	5		
Course	Object	tives:									
•	To Arc	become famil hitecture, Instr	iar with uctions,	8086 Opera	, 80X ting N	86, Pentiun Aodes, and I	n & Pentium IV Programming.	Microproc	cessor		
•	Tos	study I/O, Mul	ti progra	ammin	g and	Arithmetic	Coprocessor				
Course	Course Outcomes: At the end of this course, students will be able to										
CO 1	CO 1 Understand architectures of 80286, 80386, 80486 and Pentium Pro-processors.										
CO 2	2 Analyze I/O Programming.										
CO 3	Comp	pare the variou	s Micro	proces	sors.						

Review of 8086 Processor: Architecture, Register organization, Addressing Modes and Instruction Set (Brief treatment only), Difference between 8086 and 8088 with rest to pin structures.

The 80286 Microprocessors: Architecture, Register Organization, Addressing Modes and instruction sets of 80286 (brief treatment only)

UNIT II

The 80386, and 80486 Microprocessors: Architectural features, Register Organization, Memory management, Virtual 8086 mode, The Memory Paging Mechanism, Pin Definitions of 80386 and 80486 (brief treatment).

UNIT III

The Pentium and Pentium Pro-processors: The Memory System, Input/output system, Branch Prediction Logic, Cache Structure, Pentium Registers, Serial Pentium pro features.

The Pentium IV and Dual Core Microprocessors: Architecture, Special Registers and Pin Structures (brief treatment only)

UNIT IV

I/O Programming: Fundamentals of I/O Considerations Programmed I/O, Interrupt I/O, Block Transfers and DMA, I/O Design Example.

Introduction to Multiprogramming: Process Management, Semaphores Operations, Common Procedure Sharing, Memory Management, Virtual Memory Concept of 80286 and other advanced Processors.

UNIT V

Arithmetic Coprocessor, MMX and SIMD Technologies: Data formats for Arithmetic Coprocessor, Internal Structure of 8087 and Advanced Coprocessors. Instruction Set (brief treatment).

Text Books:

- 1. Barry, B. Brey, "The Intel Microprocessors,"8th Edition Pearson Education, 2009.
- 2. A.K. Ray and K.M. Bhurchandi,"Advanced Microprocessor and Peripherals," TMH.
- 3. YU-Chang, Glenn A. Gibson, "Micro Computer Systems: The 8086/8088 Family Architecture, Programming and Design" 2nd Edition, Pearson Education, 2007.
- 4. Mohamed Rafiquzzaman," Microprocessors and Microcomputer-Based System Design", CRC Press; 2nd edition.

Reference Books:

- 1. Walter A. Triebel, Avtar Singh, "The 8088 and 8086 Microprocessors: Programming, Interfacing, Software, Hardware, and Applications : Including the 80286, 80386, 80486, and Pentium Processors", Prentice Hall, 2000
- 2. Douglas V. Hall, "Microprocessors and Interfacing," Special Indian Edition, 2006.
- 3. Carol Anne Ogdin, "Microcomputer System Design and Techniques", IEEE Computer Society.
- 4. Dave Bursky, "Components for Microcomputer System Design: Selected from Electronic Design", Hayden Pub. Co.

Course	Title	Joint Tim Multi	e Freg Resolu	uency ution	y Ana Anal	alysis & ysis	M.Tech III Sem.			
Course	Code	Category	Hou	rs/We	ek	Credits	Maxim	Maximum Marks		
18543	302	PE V	L	TPCContinuous Internal AssessmentEnd Exams					Total	
			3	0	0	3	40	60	100	
Mid Exam Duration: 2Hrs						End Exam Duration: 3Hrs				
 Course Objectives: To introduction Transforms in signal processing. To understand Wavelets and its Applications. 										
Course	Course Outcomes: At the end of this course, students will be able to									
CO 1 Introduction to Transforms in signal processing										
CO 2	CO 2 To understand Time -Frequency Analysis & Multiresolution Analysis									
CO 3	Study	of Wavelets a	and its A	pplica	tions					

Introduction: Review of Fourier Transform, Parseval Theorem and need for joint timefrequency Analysis. Concept of non-stationary signals, Short-time Fourier transforms (STFT), Uncertainty Principle, and Localization/Isolation in time and frequency, Hilbert Spaces, Banach Spaces, and Fundamentals of Hilbert Transform.

UNIT II

Bases for Time-Frequency Analysis: Wavelet Bases and filter Banks, Tiling's of Wavelet Packet and Local Cosine Bases, Wavelet Transform, Real Wavelets, Analytic Wavelets, Discrete Wavelets, Instantaneous Frequency, Quadratic time-frequency energy, Wavelet Frames, Dyadic wavelet Transform, Construction of Haar and Roof scaling function using dilation equation and graphical method.

UNIT III

Multiresolution Analysis: Haar Multiresolution Analysis, MRA Axioms, Spanning Linear Subspaces, nested subspaces, Orthogonal Wavelets Bases, Scaling Functions, Conjugate Mirror Filters, Haar 2-band filter Banks, Study of up samplers and down samplers, Conditions for alias cancellation and perfect reconstruction, Discrete wavelet transform and relationship with filter Banks, Frequency analysis of Haar 2-band filter banks, scaling and wavelet dilation equations in time and frequency domains, case study of decomposition and reconstruction of given signal using orthogonal framework of Haar 2band filter bank.

UNIT IV

Wavelets: Daubechies Wavelet Bases, Daubechies compactly supported family of wavelets; Daubechies filter coefficient calculations, Case study of Daub-4 filter design, Connection between Haar and Daub-4, Concept of Regularity, Vanishing moments. Other classes of wavelets like Shannon, Meyer, and Battle-Lamarie.

UNIT V

Bi-orthogonal wavelets and Applications: Construction and design. Case studies of biorthogonal 5/3 tap design and its use in JPEG 2000. Lifting schemes for generating orthogonalbases of second generation wavelets.

JTFA Applications: Speech, audio, image and video compression; signal denoising, feature extraction, inverse problem.

Text Books:

- 1. S. Mallat, "A Wavelet Tour of Signal Processing," 2nd Edition, Academic Press, 1999.
- 2. L. Cohen, "Time-frequency analysis", 1st Edition, Prentice Hall, 1995.
- 3. G.Strang and T. Q. Nguyen, "Wavelets and Filter Banks", 2nd Edition, Wellesley
- 4. Cambridge Press, 1998.

References:

- 1. I. Daubechies, "Ten Lectures on Wavelets", SIAM, 1992.
- 2. P. P. Vaidyanathan, "Multirate Systems and Filter Banks", Prentice Hall, 1993.

 M. Vetterli and J. Kovacevic, "Wavelets and Subband Coding", Prentice Hall, 1995.
 Nandini Basumallick, S. V. Narasimhan, and S. Veena, "Introduction to Wavelet Transform: A Signal Processing Approach", Alpha Science International Ltd.

Course '	Title	Pattern R	ecogni. Lea	tion a rning	nd N	Iachine	M.Tec	h III Sem.			
Course	Code	Category	Category Hours/Week			Credits	Maxim	um Marks			
18543	1854303 PE V L T P					С	Continuous Internal AssessmentEnd ExamsTotal				
			3	0	0	3	40 60 100				
Mid Exam Duration: 2Hrs						End Exam Duration: 3Hrs					
Course	Object	tives:									
•	Тοι	understand par	ametric	and lir	near m	odels for cla	assification.				
•	Tol	learn Linear m	odels fo	or class	ificat	ion, Linear c	liscriminant func	tions and N	leural		
	Net	work.									
Course	Course Outcomes: At the end of this course, students will be able to										
CO 1	CO1 Study the parametric and linear models for classification.										
CO 2 Design neural network and SVM for classification.											
CO 3	Deve	lon machine in	depende	ent and	lunsu	pervised lea	rning techniques				

Introduction to Pattern Recognition: Problems, applications, design cycle, learning and adaptation, examples, Probability Distributions, Parametric Learning - Maximum likelihood and Bayesian Decision Theory- Bayes rule, discriminant functions, loss functions and Bayesian error analysis

UNIT II

Linear models for classification: Discriminant functions, Two and multiple classes, Fisher's linear discriminant, Fisher's discriminant for multiple classes, The perceptron algorithm.

UNIT III

Neural Network: perceptron, multi-layer perceptron, backpropagation algorithm, error surfaces, practical techniques for improving backpropagation, additional networks and training methods.

UNIT IV

Linear discriminant functions - decision surfaces, two-category, multi-category, minimumsquared error procedures, the Ho-Kashyap procedures, linear programming algorithms, Support vector machine

UNIT V

Algorithm independent machine learning – lack of inherent superiority of any classifier, bias and variance, re-sampling for classifier design.

Unsupervised learning and clustering – k-means clustering, fuzzy k-means clustering, hierarchical clustering.

Text Books:

- 1. Richard O. Duda, Peter E. Hart, David G. Stork, "Pattern Classification", 2nd Edition John Wiley & Sons, 2001.
- 2. Trevor Hastie, Robert Tibshirani, Jerome H. Friedman, "The Elements of Statistical Learning", 2nd Edition, Springer, 2009.
- 3. C. Bishop, "Pattern Recognition and Machine Learning", Springer, 2006.
- 4. Richard O. Duda, "Pattern Recognition", Wiley India Pvt Ltd.

- 1. Valliappa Lakshmanan, "Machine Learning Design Patterns", Shroff/O'Reilly.
- 2. Manaranjan Pradhan, "Machine Learning using Python", Wiley.

OPEN ELECTIVES

Course	Title	В	usiness	Anal	ytics		M.Tec	h III Sem.	
Course	Code	Category	Hou	rs/We	ek	Credits	Maxim	um Marks	
18713	304	OE	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
			3	0	0	3	40	60	100
Mid Exa	am Du	ration: 2Hrs					End Exam Dura	ation: 3Hrs	8
Course	Object	tives:							
 Understand the role of business analytics within an organization Analyze data using statistical and data mining techniques and understand relationships between the underlying business processes of an organization. To gain an understanding of how managers use business analytics to formulate and solve business problems and to support managerial decision making. To become familiar with processes needed to develop, report, and analyze business data.Use decision-making tools/Operations research techniques Mange business process using analytical and management tools Analyze and solve problems from different industries such as manufacturing, service, retail, software, banking and finance, sports, pharmaceutical, aerospace etc 									
CO 1	Unde	rstand knowle	dge of d	ata ana	lytics				
CO 2	2 Demonstrate the ability of think critically in making decisions based on data and deep analytics								
CO 3	3 Demonstrate the ability to use technical skills in predicative and prescriptive modeling to support business decision-making								
CO 4	Demo	onstrate the ab	ility to tı	anslate	e data	into clear, a	ctionable insight	S	

UNIT I

Business analytics: Overview of Business analytics, Scope of Business analytics, Business Analytics Process, Relationship of Business Analytics Process and organisation, competitive advantages of Business Analytics. Statistical Tools: Statistical Notation, Descriptive Statistical methods, Review of probability distribution and data modeling, sampling and estimation methods overview.

UNIT II

Trendiness and Regression Analysis: Modeling Relationships and Trends in Data, simple Linear Regression.Important Resources, Business Analytics Personnel, Data and models for Business analytics, problem solving, Visualizing and Exploring Data, Business Analytics Technology

UNIT III

Organization Structures of Business analytics, Team management, Management Issues, Designing Information Policy, Outsourcing, Ensuring Data Quality, Measuring contribution of Business analytics, Managing Changes Descriptive Analytics, predictive analytics, predicative Modelling, Predictive analytics analysis, Data Mining, Data Mining Methodologies, Prescriptive analytics and its step in the business analytics Process, Prescriptive Modelling, nonlinear Optimization

UNIT IV

Forecasting Techniques: Qualitative and Judgmental Forecasting, Statistical Forecasting Models, Forecasting Models for Stationary Time Series, Forecasting Models for Time Series with a Linear Trend, Forecasting Time Series with Seasonality, Regression Forecasting with Casual Variables, Selecting Appropriate Forecasting Models.

Monte Carlo Simulation and Risk Analysis: Monte Carle Simulation Using Analytic Solver Platform, New-Product Development Model, Newsvendor Model, Overbooking Model, Cash Budget Model.

UNIT V

Decision Analysis: Formulating Decision Problems, Decision Strategies with the without Outcome Probabilities, Decision Trees, The Value of Information, Utility and Decision Making. Recent Trends in : Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data journalism.

Text Books:

1. Marc J. Schniederjans, Dara G. Schniederjans, Christopher M. Starkey, "Business analytics Principles, Concepts, and Applications", Pearson FT Press.

2. James Evans, "Business Analytics", persons Education.

3. Lynne Cooper, "Business NLP For Dummies".

4. Boris Schlossberg, "Technical Analysis of the Currency Market: Classic Techniques for Profiting from Market Swings and Trader Sentiment".

References:

1. Robert C. Hughes, "Human Capital Systems, Analytics, and Data Mining".

2. Junjiro Noguchi, "Analytic Function Theory of Several Variables".

3.I. Levin Richard, "Statistics for Management", Pearson, Eighth Edition 4. S. Christian Albright and Wayne L. Winston, "Business Analytics: Data Analysis and Decision Making".

Course 1	litle	l	ndustr	ial Sa	fety		M.Tech III Sem.			
Course C	Code	Category	Hours/Week		Credits	Maximum Marks				
187130)5 OE		L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
			3	0	0	3	40	60	100	
Mid Exa	m Du	ration: 2Hrs				End Exam Duration: 3Hrs				
 Course Objectives: To know about Industrial safety programs and toxicology, Industrial laws, regulations and source models To understand about fire and explosion, preventive methods, relief and its sizing methods To analyze industrial hazards and its risk assessment. 										
Course Outcomes: At the end of this course, students will be able to										
CO1	Analyze the effect of release of toxic substances									
CO 2	Under	rstand the indu	istrial la	ws, reg	gulatio	ons and sour	ce models			
CO 3	Apply	the methods	of preve	ntion c	of fire	and explosi	ons.			
CO 4	Understand the relief and its sizing methods.									

CO 5

Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.

Understand the methods of hazard identification and preventive measures.

UNIT II

Fundamentals of maintenance engineering: Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

UNIT III

Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods

UNIT IV

Fault tracing: Fault tracing-concept and importance, decision treeconcept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and

electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, Electrical motors, Types of faults in machine tools and their general causes

UNIT V

Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets, Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

Text Books:

- 1. Higgins & Morrow, "Maintenance Engineering Handbook", Da Information Services.
- 2. H. P. Garg, "Maintenance Engineering", S. Chand and Company.
- 3. Audels, "Pump-hydraulic Compressors", Mcgrew Hill Publication.Foundation Engineering Handbook.
- 4. J Maiti, Pradip Kumar Ray, "ndustrial Safety Management" Springer; 1st ed.

Reference Books:

- 1. L M Deshmukh, "Industrial Safety Management", .McGraw Hill Education
- 2. C. Asfahl and David Rieske, "Industrial Safety and Health Management", Pearson.
- 3. M. P. Poonia and S. C. Sharma, "Industrial Safety and Maintenance Management", Khanna Book Publishing.
- 4. Naseer Elahi, "Industrial Safety Management", Kalpaz Publications.

Course	Title	Operation Research					M.Tech III Sem.			
Course	Code	Category	Hours/Week			Credits	Maximum Marks			
18713	06	OE	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
			3	0	0	3	40	60	100	
Mid Exa	am Du	ration: 2Hrs					End Exam Dura	ation: 3Hrs	5	
 Course Objectives: To impart knowledge in concepts and tools of Operations Research. To understand mathematical models used in Operations Research. To apply these techniques constructively to make effective business decisions. 										
Course	Outco	mes: At the er	nd of this	s cours	e, stu	dents will be	able to			
CO 1	Apply the dynamic programming to solve problems of discreet and continuous variables									
CO 2	Apply	y the concept	of non	-linear	prog	gramming				
CO 3	Perform sensitivity analysis									
CO 4	Model the real world problems and simulate it.									

Optimization Techniques, Model Formulation, models, General L.R Formulation, Simplex Techniques, Sensitivity Analysis, Inventory Control Models

UNIT II

Formulation of a LPP - Graphical solution revised simplex method - duality theory - dual simplex method - sensitivity analysis - parametric programming

UNIT III

Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem - max flow problem - CPM/PERT

UNIT IV

Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.

UNIT V

Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation

Text Books:

- 1. K.Rajagopal, "Operations Research", PHI.
- 2. Hilier, Liebermann, "Operations Research" McGraw Hill Education.
- 3. Taha, "Introduction to Operations Research", PHI.
- 4. Frederick S. Hillier, "Operations Research" McGraw Hill Higher Education.

- 1. Maurice Saseini, ArhurYaspan& Lawrence Friedman, "Operations Research: Methods & Problems".
- 2. Allen, David Edmund, "Operations Research".
- 3. J.K. Sharma, "Operations Research".
- 4. Wayne L. Winston, Thomson Brooks, Cole, "Operations Research".

Course	Title	Cost Management of Engin Projects			neering	M.Tech III Sem.			
Course	Code	Category	Hours/Week			Credits	Maximum Marks		
18713	607	OE	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
			3	0	0	3	40	60	100
Mid Exa	am Du	ration: 2Hrs					End Exam Dura	ation: 3Hrs	8
Course (• E d	 Course Objectives: Establish systems to help streamline the transactions between corporate support departments and the operating units. 								
 Devise transfer pricing systems to coordinate the buyer-supplier interactions between decentralized organizational operating units. Use pseudo profit centers to create profit maximizing behavior in what were formerly cost centers. 									
Course	Outco	mes: At the er	nd of this	cours	e, stud	lents will be	able to		
CO 1	Understand the concept of strategic cost management, strategic cost analysis – target								
	costing, life cycle costing and Kaizen costing and the cost drive concept								
CO 2	Describe the decision-making; relevant cost, differential cost, incremental cost and opportunity cost, objectives of a costing system								
CO 3	Unde: execu	Understand the meaning and different types of project management and project execution, detailed engineering activities.							
CO 4	Under Bar c	Understand the project contracts, cost behaviour and profit planning types and contents, Bar charts and Network diagram							
CO 5	Analy	yse by using qu	uantitativ	ve tech	inique	s for cost ma	anagement like P	ERT/CPM.	

Introduction and Overview of the Strategic Cost Management Process Cost concepts in decision-making; Relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision-Making.

UNIT II

Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and non- technical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process

UNIT III

Cost Behavior and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis. Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing. Costing of service sector.

UNIT IV

Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Total Quality Management and Theory of constraints. Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

UNIT V

Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

Textbooks:

- 1. Project Management 2.0: Leveraging Tools, Distributed Collaboration, and Metrics for Project Success 1st Edition, Kindle Editionby Harold Kerzner
- 2. Cost Management Of Capital Projects by Kurt Heinze, Taylor & Francis Inc.
- 3. Cost Management of Construction Projects Donald Towey
- 4. The Engineer's Cost HandbookTools for Managing Project CostsBy Richard E. Westney

- 1. Architect's Essentials of Cost Management Michael D. Dell'Isola
- 2. Charles T. Horngren and George Foster, Advanced ManagementAccounting
- 3. Robert S Kaplan Anthony A. Alkinson, Management & CostAccounting
- 4.AshishK. Bhattacharya, Principles & Practices of Cost Accounting A. H. Wheelerpublisher

Course '	Title C	omposit	e Mat	M.Tec	h III Sem.				
Course (Code Category	Hou	Hours/Week			Maximum Marks			
18713	08 OE	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
		3	0	0	3	40	60	100	
Mid Exa	m Duration: 2Hrs	5			End Exam Duration: 3Hrs				
 Course Objectives: To Familiarize the basic expressions and methods used in the mechanics of composite structures. A complete theoretical and practical knowledge of composite materials. To understand the mechanical behaviour of anisotropic materials and how they differ from classical construction materials. 							site fer from		
CO 1	Understand the specifics of mechanical behavior of layered composites compared to isotropic materials.						pared to		
CO 2	Apply constitutive equations of composite materials and understand mechanical behavior at micro, macro and meso level.								
CO 3	Determine stresses and strains in composites.								
CO 4	Apply failure crite	ria and cr	itically	v evalı	late the resu	lts.			
CO 5	Understand the moisture.	echanical	behav	ior of	composites	due to variation	in tempera	ture and	

INTRODUCTION: Definition – Classification and characteristics of Composite materials. Advantages and application of composites. Functional requirements of reinforcement and matrix. Effect of reinforcement (size, shape, distribution, volume fraction) on overall composite performance.

UNIT II

REINFORCEMENTS: Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures. Isostrain and Isostress conditions.

UNIT III

Manufacturing of Metal Matrix Composites: Casting – Solid State diffusion technique, Cladding – Hot isostatic pressing. Properties and applications. Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltration – Liquid phase sintering. Manufacturing of Carbon – Carbon composites: Knitting, Braiding, Weaving. Properties and applications.

Manufacturing of Polymer Matrix Composites: Preparation of Moulding compounds and prepregs – hand layup method – Autoclave method – Filament winding method – Compression moulding – Reaction injection moulding. Properties and applications.

UNIT V

Strength: Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

TEXT BOOKS:

- 1. Material Science and Technology Vol 13 Composites by R.W.Cahn VCH, West Germany.
- 2. Materials Science and Engineering, An introduction. WD Callister, Jr., Adapted by R. Balasubramaniam, John Wiley & Sons, NY, Indian edition, 2007.

- 1. Hand Book of Composite Materials-ed-Lubin.
- 2. Composite Materials K.K.Chawla.
- 3. Composite Materials Science and Applications Deborah D.L. Chung.
- 4. Composite Materials Design and Applications Danial Gay, Suong V. Hoa, and Stephen W. Tasi.

Course Title		Waste 1	to ene	rgy	M.Tech III Sem.			
Course Code	Category	Hours/Week			Credits	Maximum Marks		
1871309	OE	L	Т	Р	С	Continuous Internal AssessmentEnd Exams	Total	
		3	0	0	3	40	60	100
Mid Exam Duration: 2Hrs					End Exam Dura	ation: 3Hrs	5	

Course Objectives:

- To enable students to understand of the concept of Waste to Energy.
- To link legal, technical and management principles for production of energy form waste.
- To learn about the best available technologies for waste to energy.
- To analyze of case studies for understanding success and failures.
- To facilitate the students in developing skills in the decision making process.

Course Outcomes: At the end of this course, students will be able to							
CO 1	Apply the knowledge about the operations of Waste to Energy Plants.						
CO 2	Analyze the various aspects of Waste to Energy Management Systems.						
CO 3	Carry out Techno-economic feasibility for Waste to Energy Plants.						
CO 4	Apply the knowledge in planning and operations of Waste to Energy plants.						

UNIT I

Introduction to Energy from Waste: Classification of waste as fuel – Agro based, Forest residue, Industrial waste - MSW – Conversion devices – Incinerators, gasifiers, digestors

UNIT II

Biomass Pyrolysis: Pyrolysis – Types, slow fast – Manufacture of charcoal – Methods - Yields and application – Manufacture of pyrolytic oils and gases, yields and applications.

UNIT III

Biomass Gasification: Gasifiers – Fixed bed system – Downdraft and updraft gasifiers – Fluidized bed gasifiers – Design, construction and operation – Gasifier burner arrangement for thermal heating – Gasifier engine arrangement and electrical power – Equilibrium and kinetic consideration in gasifier operation.

UNIT IV

Biomass Combustion: Biomass stoves – Improved chullahs, types, some exotic designs, Fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.

UNIT V

Biogas: Properties of biogas (Calorific value and composition) - Biogas plant technology and status - Bio energy system - Design and constructional features - Biomass resources and their classification - Biomass conversion processes - Thermo chemical conversion - Direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion -

anaerobic digestion - Types of biogas Plants – Applications - Alcohol production from biomass - Bio diesel production - Urban waste to energy conversion - Biomass energy programme in India

Text Books:

- 1. Non Conventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 1990.
- 2. Biogas Technology A Practical Hand Book Khandelwal, K. C. and Mahdi, S. S., Vol. I & II, Tata McGraw Hill Publishing Co. Ltd., 1983.
- 3. Food, Feed and Fuel from Biomass, Challal, D. S., IBH Publishing Co. Pvt. Ltd., 1991.
- 4. Biomass Conversion and Technology, C. Y. WereKo-Brobby and E. B. Hagan, John Wiley & Sons, 1996.

- 1. Non Conventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 1990.
- 2. Biogas Technology A Practical Hand Book Khandelwal, K. C. and Mahdi, S. S., Vol. I & II, Tata McGraw Hill Publishing Co. Ltd., 1983.
- 3. Food, Feed and Fuel from Biomass, Challal, D. S., IBH Publishing Co. Pvt. Ltd., 1991.
- 4. Waste segregation and potential for recycling by Jacob.M.Kihila